The localization of guanylyl cyclase-activating proteins in the mammalian retina.
نویسندگان
چکیده
PURPOSE To explore the distribution of guanylyl cylase-activating proteins 1 and 2 (GCAP1 and GCAP2) in the mammalian retina. METHODS Cryostat and vibratome vertical sections and wholemount retinas from mouse, rat, cat, bovine, monkey, and human eyes were prepared for immunocytochemistry and viewing by light and confocal microscopy. RESULTS In all mammalian retinas investigated, intense GCAP1 immunoreactivity (GCAP1-IR) was seen in cone photoreceptor inner and outer segments, cell bodies, and synaptic regions. Intensity of the GCAP1-IR was strong in inner segments of rods in all species but weaker in outer segments-particularly so in primates and cats. GCAP2 immunoreactivity (GCAP2-IR) was weak in bovine, mouse, and rat cones but was intense in human and monkey cones. In all species except primates, GCAP2 staining was intense in rod inner and outer segments. In primates GCAP2-IR was intense in the rod inner segment but faint in the rod outer segment. A striking difference from the GCAP1 pattern of immunoreactivity was seen with GCAP2 antibodies as far as the inner retina was concerned. GCAP2-IR was evident in certain populations of bipolar, amacrine, and ganglion cells in all species. CONCLUSIONS GCAP1 and GCAP2, which are involved in Ca2+-dependent stimulation and inhibition of photoreceptor guanylyl cyclase, can be detected in mammalian photoreceptor inner and outer segments, consistent with their physiological function. The occurrence of both GCAPs in the synaptic region of the photoreceptors indicates participation of these proteins in pathways other than regulation of phototransduction. The occurrence of GCAP2 in inner retinal neurons is indicative of second-messenger chemical transduction, possibly in metabotropic glutamate, gamma-aminobutyric acid (GABA) receptor, and nitric oxide-activated neural circuits.
منابع مشابه
Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily.
The mammalian retina contains at least two guanylyl cyclases (GC1 and GC2) and two guanylyl cyclase-activating proteins (GCAP1 and GCAP2). Here we present evidence of the presence of a new photoreceptor-specific GCAP, termed GCAP3, which is closely related to GCAP1. The sequence similarity of GCAP3 with GCAP1 and GCAP2 is 57 and 49%, respectively. Recombinant GCAP3 and GCAP2 stimulate GC1 and G...
متن کاملp19 detected in the rat retina and pineal gland is a guanylyl cyclase-activating protein (GCAP).
The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) conc...
متن کاملStructural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1
Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite different. Retinal recoverin controls Ca(2) (+)-dependent inactivation of light...
متن کاملDomain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation.
In the human genome, sequence analysis indicates there are five functional transmembrane guanylyl cyclases, enzymes that synthesize the intracellular second messenger, cGMP. Two, GC-A and GC-B or NPR-A and NPR-B, are widely distributed receptors for atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide, more commonly known as ANP, BNP and CNP, respectively. One cy...
متن کاملRole of guanylyl cyclase modulation in mouse cone phototransduction.
A negative phototransduction feedback in rods and cones is critical for the timely termination of their light responses and for extending their function to a wide range of light intensities. The calcium feedback mechanisms that modulate phototransduction in rods have been studied extensively. However, the corresponding modulation mechanisms that enable cones to terminate rapidly their light res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 39 7 شماره
صفحات -
تاریخ انتشار 1998